This article was downloaded by: On: 24 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

PRELIMINARY STUDY ON THE RETENTION OF SOME ANTIOXIDANTS ON REVERSE PHASE THIN LAYER CHROMATOGRAPHIC PLATES

N. Dimov^a ^a NIHFI, Sofia, Bulgaria

Online publication date: 13 January 2005

To cite this Article Dimov, N.(1999) 'PRELIMINARY STUDY ON THE RETENTION OF SOME ANTIOXIDANTS ON REVERSE PHASE THIN LAYER CHROMATOGRAPHIC PLATES', Journal of Liquid Chromatography & Related Technologies, 22: 1, 77 – 82

To link to this Article: DOI: 10.1081/JLC-100101644 URL: http://dx.doi.org/10.1081/JLC-100101644

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PRELIMINARY STUDY ON THE RETENTION OF SOME ANTIOXIDANTS ON REVERSE PHASE THIN LAYER CHROMATOGRAPHIC PLATES

N. Dimov NIHFI 1797 Sofia, Bulgaria

ABSTRACT

The R_f values of ten antioxidants, namely several UOP, Permanax, Antozite, etc., have been calculated on the basis of their structures. The R_{fcalc} values have been compared with the experimental R_f values, obtained on reversed phase TLC plates. The variance of the calculated data around the experimental R_f values is $4\cdot10^{-4}$. The approach allows a positive identification without reference substances or with a limited number of standards, which is the structure that gives R_{fcalc} values close to the R_f of the sample spots. Some considerations on the probable retention mechanism are also given.

INTRODUCTION

The identification of the antioxidant spots on a TLC plate is performed mainly by comparison of the obtained R_f values with those of applied reference substances. Hence, a library of standards is necessary for reference. Even when this condition is fulfilled, a lot of applications are necessary. This is both expensive and time-consuming.

77

Copyright © 1999 by Marcel Dekker, Inc.

www.dekker.com

Table 1

Antioxidants, Their Trade Names and Abbreviations

	Antioxidant	Trade name	Abbreviation
1	N,N' Di-sec.butyl-	UOP 5	D(secBu)PhDA
2	n,N' Di-2,4Dimethyl- amyl-p-phenylene- diamine	UOP788, Santoflex, Flexzone	D(DMAm)PhDA
3	N,N' Di-sec.heptyl- p-phenylenediamine	UOP 288, Antozite 1	D(2MHp)PhDA
4	N,N'Di-2Ethyl- 4methylamyl-	UOP 88, Antozite 2	D(2Et4MAm)PhDA
5	p-phenylenediamine N,N' iPropyl-phenyl- p-phenylenediamine	Santoflex IP, Permanax IPPD, Flexzone 3C	iPrPhPhDA
6	N,N' sec. butyl-phenyl- p-phenylenediamine	Flexzone 5	secBuPhPhDA
7	N,N'2,4Dimethylbutyl- phenyl-p-phenylene- diamine	UOP 562, Antozite 67, Permanax 6PPD	24DMBuPhPhDA
8	N,N' sec. Octyl-phenyl- p-phenylenediamine	UOP 688	secOPhPhDA
9	N,N' Diphenyl-	Permanax DPPD, Ekaland DPPD	DPhPhDA
10	N,N'Diphenylethylene- diamine		N,N'DPhEtDA

The so called Quantitative Structure-Retention Relationships (QSRR) concept allows calculation of the R_f values, based on the structure of expected antioxidants. According to the concept of QSRR the solute structure can be presented by the so called structure descriptors. Different solute properties as well as topological, geometrical, and/or quantum chemical indices have been used as descriptors. It is assumed, further, that one or a combination of descriptors can mimic the retention properties of the solute molecule. Thus, putting them as parameters in an equation, the value of the response (in this case, R_f) should approximate the experimental retention value.

If the difference between R_{fcalc} and R_{fexp} equals the laboratory repeatability, the identification is considered to be positive. If the identification is questionable, the practitioner can limit the number of reference substances

Figure 1. Structure of N,N'-di-sec.butyl-p-phenylenediamine and iso-propyl-phenyl-pphenylenediamine, their molecular mass, Mm, number of C atoms in the substituents (in bracket - the number of C atoms in the straight chain), geometrical invariant of Winer index, GW, atom charge at C₂ atom in the ring and the electron population on the higher occupied molecular orbital (HOMO) of C⁶ atom in the ring.

spotted on the sample plate, instead choosing structures, that give R_{fcalc} values which are close to the sample spot R_f values. The present work deals with the aforementioned screening process by means of 10 antioxidants separated on RP TLC plates.

EXPERIMENTAL

The experimental R_f values have been taken from the literature.¹ Compounds for which the accuracy of their predicted R_f value has been studied are given in Table 1. The hydrophobicity, logP, the total number of C atoms in alkyl chain(s), C_n , respectively, the length of straight chain, the molecular mass, Mm, the connectivity index, χ , Winer index, W, (topological indices), their geometrical and information invariance (e.g. GW, Info χ etc.) has been checked as defining the retention, taking into account the reversed character of the stationary phase. Based on our experience with RP stationary phases,

Table 2

Descriptors with the Highest Value of their Individual Correlation Coefficient, ir, Descriptors with Insignificant ir, but Tuning the Calculated R_f Value to an Experimental R_f Value

Descriptor	ir	Descriptor	ir	
popHOMO{3}*	0.904	Planarity	0.36	
Info χ	0.875	GIW	0.26	
polar (3)	0.83	logP	0.26	
popHOMO{1}, {2},{4},{5}	0.700-0.799	Q{2}	0.08	
popHOMO{6}	0.671	popLUMO{j}	< 0.10	

* The figure determines the atom number in the structure (see Figure 1).

contributions of the aromatic ring (e.g., the charge at a given ring C_i atom, Q{i}) and N atoms (e.g. population on j-orbital - popLUMO{j}) have also been tested. Two examples presented in Figure 1 explain qualitatively the meaning of some of the above mentioned structure descriptors. All calculations have been performed with the OASIS software program.^{2,3}

To reduce the possibility of chance correlation, the model for creation of quantitative structure-retention relationship equations given elsewhere⁴ has been used. Thus, only a few of all calculated indices have been tested as parameters in the equation for preliminary calculation of the solute retention.

RESULTS

Table 2 presents the descriptors with the highest individual correlation coefficient with the experimental retention. Results indicate that, the electron population on HOM orbital of ring C atom on ortho to -NH- location plays a significant role - the R_{fcalc} values correspond to a correlation coefficient r_i of 0.904 to those of R_{fexp} .

The R_{fcalc} is calculated by the aid of the following equation:

$$R_{\text{fcalc}} = 0.52(\pm 0.04) - 1.53(\pm 0.18) \text{.popHOMO}\{3\}$$
(1)
(variance v=3.10⁻³ and F = 74)

 R_{fcalc} values are given in column 3 of Table 3. Although the r_i value is high, the accuracy is poor from a chromatographic point of view. The number of cases allows for the inclusion of two parameters in the equation.

Table 3

$Comparison \ Between \ Experimental \ (R_{fexp} \) \ and \ Calculated \ (R_{fcalc} \) \ by \\ Means \ of \ Equations \ 1 \ and \ 2 \ Retention \ Values$

Abbreviation	R _{fexp}	R _{fcalc} Equ. 1	R _{fcalc} Equ. 2	pop HOMO {3}	pop HOMO {6}	Q{2}
DiBuPhDA	0.02	0.01	0.02	0.336	-0.1625	-0.0718
D(DMAm)PhDA	0.03	0.03	0.03	0.321	-0.1622	-0.0754
D(2MHp)PhDA	0.03	0.03	0.03	0.320	-0.1603	-0.0747
D(2Et4MAm)PhD	0.11	0.005	0.11	0.338	-0.1817	-0.1288
А						
iPrPhPhDA	0.08	0.18	0.08	0.222	-0.2240	-01657
secBuPhPhDA	0.14	0.19	0.10	0.216	-0.2167	-0.1652
24DMBuPhPhDA	0.19	0.21	0.19	0.202	-0.1881	-0.1643
secOPhPhDA	0.21	0.22	0.24	0.197	-0.1668	-0.1615
DPhPhDA	0.43	0.41	0.44	0.074	-0.0913	-0.1465
N,N'DPhEtDA	0.56	0.51	0.54	0.011	-0.240	-0.1088

The resultant expression is accurate:

$$R_{fcalc} = 0.33(\pm 0.02) + 3.07(\pm 0.12).popHOMO\{6\} \\ -2.67(\pm 0.18).Q\{2\}$$
(2)

with $r_i = 0.9896$, v=4.10⁻⁴ and F = 334. The R_{fcalc} calculated by means of this equation R_{fcalc} values are given in column 4 of Table 3. The interrelation between what is used in the equation (2) parameters is statistically insignificant: 0.100.

DISCUSSION

This study gives information not solely for tentative, preliminary orientation about the identity of experimentally obtained spots. To rely on this information, equation (2) has been checked for chance correlation by the "leave-one-out" test. All parameter estimations of the 9 secondary equations are within the limits of parameter estimations of the equation (2).

Thus, equation (2) is accepted as reliable and is used for some considerations about the retention mechanism of studied amines on RP plates. It is usually assumed that, in reversed phase chromatography, the hydrophobicity is a very important factor. This study shows that the retention of amines studied

is independent of factors, immediately connected with the solution, for example, logP. It is also assumed that, for organic bases, the basicity of the N atom is also an important reason for the retention. As a result of the equations obtained, it follows that the local HOMO population is the significant factor for the retention. On the contrary, the population on LUM orbitals has a r_i with R_f below 0.1. Because the achieved accuracy with popHOMO{3} is not satisfactory, two descriptors have been combined. At combinations, popHOMO{6} is tuned better than popHOMO{3}. The best tuning parameter was the charge of C⁽²⁾ ring atom. An adequate prediction has been achieved practically - the variance is $4 \cdot 10^{-4}$ and is statistically equal with the repeatability usually obtained in TLC. In conclusion, preliminary calculations of the R_f of expected compounds can make TLC work more effectively and can assist in formulating quantitative considerations of atomic interactions.

ACKNOWLEDGMENT

The considerable help of Dr. Bernard Fried from Lafayette College (Easton, PA) in the preparation of this manuscript is gratefully acknowledged.

REFERENCES

- Ch. B. Airaudo, A. Gayte-Sorbier, P. Aujoulat, V. Mercier. J. Chromatogr., 437, 59-82, (1988).
- Ov. Mekenyan, S. Karabunarliev, D. Bonchev. J. Math. Chem., 4 207-215 (1990), and Comput. Chem., 14, 193-200 (1990).
- 3. Ov. Mekenyan, S. Karabunarliev, J. Ivanov, D. Dimitrov. *Comput. Chem.* 18, 173-187 (1994).
- 4. Ov. Mekenyan, J. Ivanov, G. Veith, S. Bradbury. *Quant. Struct. Act. Relat.*, **13**, 302-307 (1994).
- 5. N. Dimov. J. Chromatogr., 119, 109-118 (1976).
- 6. N. Dimov, A. Osman. Anal. Chim. Acta, 323, 15-25, (1996).

Received April 23, 1998 Accepted May 21, 1998 Manuscript 4828-TLC

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the <u>U.S. Copyright Office</u> for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on <u>Fair Use in the Classroom</u>.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our <u>Website</u> <u>User Agreement</u> for more details.

Order now!

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081JLC100101644